Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Int J Mol Sci ; 24(3)2023 Feb 01.
Article in English | MEDLINE | ID: covidwho-2225332

ABSTRACT

The levels of several glial and neuronal plasma biomarkers have been found to increase during the acute phase in COVID-19 patients with neurological symptoms. However, replications in patients with minor or non-neurological symptoms are needed to understand their potential as indicators of CNS injury or vulnerability. Plasma levels of glial fibrillary acidic protein (GFAP), neurofilament light chain protein (NfL), and total Tau (T-tau) were determined by Single molecule array (Simoa) immunoassays in 45 samples from COVID-19 patients in the acute phase of infection [moderate (n = 35), or severe (n = 10)] with minor or non-neurological symptoms; in 26 samples from fully recovered patients after ~2 months of clinical follow-up [moderate (n = 23), or severe (n = 3)]; and in 14 non-infected controls. Plasma levels of the SARS-CoV-2 receptor, angiotensin-converting enzyme 2 (ACE2), were also determined by Western blot. Patients with COVID-19 without substantial neurological symptoms had significantly higher plasma concentrations of GFAP, a marker of astrocytic activation/injury, and of NfL and T-tau, markers of axonal damage and neuronal degeneration, compared with controls. All these biomarkers were correlated in COVID-19 patients at the acute phase. Plasma GFAP, NfL and T-tau levels were all normalized after recovery. Recovery was also observed in the return to normal values of the quotient between the ACE2 fragment and circulating full-length species, following the change noticed in the acute phase of infection. None of these biomarkers displayed differences in plasma samples at the acute phase or recovery when the COVID-19 subjects were sub-grouped according to occurrence of minor symptoms at re-evaluation 3 months after the acute episode (so called post-COVID or "long COVID"), such as asthenia, myalgia/arthralgia, anosmia/ageusia, vision impairment, headache or memory loss. Our study demonstrated altered plasma GFAP, NfL and T-tau levels in COVID-19 patients without substantial neurological manifestation at the acute phase of the disease, providing a suitable indication of CNS vulnerability; but these biomarkers fail to predict the occurrence of delayed minor neurological symptoms.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , SARS-CoV-2 , Neurons/metabolism , Neurofilament Proteins , Biomarkers/metabolism , Glial Fibrillary Acidic Protein/metabolism
2.
Alzheimers Dement ; 18(11): 2167-2175, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2172368

ABSTRACT

INTRODUCTION: Several investigations have argued for a strong relationship between neuroinflammation and amyloid metabolism but it is still unclear whether inflammation exerts a pro-amyloidogenic effect, amplifies the neurotoxic effect of amyloid, or is protective. METHODS: Forty-two patients with acute encephalitis (ENC) and 18 controls underwent an extended cerebrospinal fluid (CSF) panel of inflammatory, amyloid (Aß40, 42, and 38, sAPP-α, sAPP-ß), glial, and neuronal biomarkers. Linear and non-linear correlations between CSF biomarkers were evaluated studying conditional independence relationships. RESULTS: CSF levels of inflammatory cytokines and neuronal/glial markers were higher in ENC compared to controls, whereas the levels of amyloid-related markers did not differ. Inflammatory markers were not associated with amyloid markers but exhibited a correlation with glial and neuronal markers in conditional independence analysis. DISCUSSION: By an extensive CSF biomarkers analysis, this study showed that an acute neuroinflammation state, which is associated with glial activation and neuronal damage, does not influence amyloid homeostasis.


Subject(s)
Alzheimer Disease , Amyloidosis , Encephalitis , Humans , Amyloid beta-Peptides/metabolism , tau Proteins/cerebrospinal fluid , Alzheimer Disease/cerebrospinal fluid , Neuroinflammatory Diseases , Biomarkers/cerebrospinal fluid , Amyloidogenic Proteins , Peptide Fragments/cerebrospinal fluid
3.
Brain ; 145(11): 4097-4107, 2022 11 21.
Article in English | MEDLINE | ID: covidwho-2017743

ABSTRACT

COVID-19 is associated with neurological complications including stroke, delirium and encephalitis. Furthermore, a post-viral syndrome dominated by neuropsychiatric symptoms is common, and is seemingly unrelated to COVID-19 severity. The true frequency and underlying mechanisms of neurological injury are unknown, but exaggerated host inflammatory responses appear to be a key driver of COVID-19 severity. We investigated the dynamics of, and relationship between, serum markers of brain injury [neurofilament light (NfL), glial fibrillary acidic protein (GFAP) and total tau] and markers of dysregulated host response (autoantibody production and cytokine profiles) in 175 patients admitted with COVID-19 and 45 patients with influenza. During hospitalization, sera from patients with COVID-19 demonstrated elevations of NfL and GFAP in a severity-dependent manner, with evidence of ongoing active brain injury at follow-up 4 months later. These biomarkers were associated with elevations of pro-inflammatory cytokines and the presence of autoantibodies to a large number of different antigens. Autoantibodies were commonly seen against lung surfactant proteins but also brain proteins such as myelin associated glycoprotein. Commensurate findings were seen in the influenza cohort. A distinct process characterized by elevation of serum total tau was seen in patients at follow-up, which appeared to be independent of initial disease severity and was not associated with dysregulated immune responses unlike NfL and GFAP. These results demonstrate that brain injury is a common consequence of both COVID-19 and influenza, and is therefore likely to be a feature of severe viral infection more broadly. The brain injury occurs in the context of dysregulation of both innate and adaptive immune responses, with no single pathogenic mechanism clearly responsible.


Subject(s)
Brain Injuries , COVID-19 , Influenza, Human , Humans , Neurofilament Proteins , COVID-19/complications , Biomarkers , Autoantibodies , Immunity
4.
Alzheimers Dement (Amst) ; 13(1): e12145, 2021.
Article in English | MEDLINE | ID: covidwho-1680307

ABSTRACT

INTRODUCTION: This study investigated alternative pre-analytical handling of blood for neurofilament light (NfL) analysis where resources are limited. METHOD: Plasma NfL was measured with single molecule array after alternative blood processing procedures: dried plasma spots (DPS), dried blood spots (DBS), and delayed 48-hour centrifugation. These were compared to standardized plasma processing (reference standard [RS]). In a discovery cohort (n = 10) and a confirmatory cohort (n = 21), whole blood was obtained from individuals with unknown clinical etiology. In the confirmatory cohort, delayed centrifugation protocol was paired with either 37°C incubation or sample shaking to test the effect of these parameters. RESULTS: Delayed centrifugation (R2 = 0.991) and DPS (discovery cohort, R2 = 0.954; confirmatory cohort, DPS: R2 = 0.961) methods were strongly associated with the RS. Delayed centrifugation with higher temperatures (R2 = 0.995) and shaking (R2 = 0.975) did not affect this association. DPS (P < 0.001) returned concentrations considerably lower than the RS. DISCUSSION: DPS or delayed centrifugation are viable pre-analytical procedures for the accurate quantification of plasma NfL.

5.
J Neurochem ; 161(2): 146-157, 2022 04.
Article in English | MEDLINE | ID: covidwho-1673193

ABSTRACT

SARS-CoV-2 infection can damage the nervous system with multiple neurological manifestations described. However, there is limited understanding of the mechanisms underlying COVID-19 neurological injury. This is a cross-sectional exploratory prospective biomarker cohort study of 21 patients with COVID-19 neurological syndromes (Guillain-Barre Syndrome [GBS], encephalitis, encephalopathy, acute disseminated encephalomyelitis [ADEM], intracranial hypertension, and central pain syndrome) and 23 healthy COVID-19 negative controls. We measured cerebrospinal fluid (CSF) and serum biomarkers of amyloid processing, neuronal injury (neurofilament light), astrocyte activation (GFAp), and neuroinflammation (tissue necrosis factor [TNF] ɑ, interleukin [IL]-6, IL-1ß, IL-8). Patients with COVID-19 neurological syndromes had significantly reduced CSF soluble amyloid precursor protein (sAPP)-ɑ (p = 0.004) and sAPPß (p = 0.03) as well as amyloid ß (Aß) 40 (p = 5.2 × 10-8 ), Aß42 (p = 3.5 × 10-7 ), and Aß42/Aß40 ratio (p = 0.005) compared to controls. Patients with COVID-19 neurological syndromes showed significantly increased neurofilament light (NfL, p = 0.001) and this negatively correlated with sAPPɑ and sAPPß. Conversely, GFAp was significantly reduced in COVID-19 neurological syndromes (p = 0.0001) and this positively correlated with sAPPɑ and sAPPß. COVID-19 neurological patients also displayed significantly increased CSF proinflammatory cytokines and these negatively correlated with sAPPɑ and sAPPß. A sensitivity analysis of COVID-19-associated GBS revealed a non-significant trend toward greater impairment of amyloid processing in COVID-19 central than peripheral neurological syndromes. This pilot study raises the possibility that patients with COVID-19-associated neurological syndromes exhibit impaired amyloid processing. Altered amyloid processing was linked to neuronal injury and neuroinflammation but reduced astrocyte activation.


Subject(s)
Alzheimer Disease , Amyloidosis , COVID-19 , Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , COVID-19/complications , Cohort Studies , Cross-Sectional Studies , Humans , Pilot Projects , Prospective Studies , SARS-CoV-2
6.
Alzheimer's & Dementia ; 17(S5):e057889, 2021.
Article in English | Wiley | ID: covidwho-1589188

ABSTRACT

Background Neurologic manifestations are well-recognized features of coronavirus disease 2019 (COVID-19). However, the longitudinal association of biomarkers reflecting CNS impact and neurological symptoms is not known. We wished to determine whether plasma biomarkers of CNS injury were associated with neurologic sequelae after COVID-19. Method Patients with confirmed acute COVID-19 were studied prospectively. Neurological symptoms were recorded during the acute phase of the disease and at six months follow-up, and blood samples were collected longitudinally. Healthy age-matched individuals were included as controls. We analyzed plasma concentrations of neurofilament light-chain (NfL), glial fibrillary acidic protein (GFAp), and growth differentiation factor 15 (GDF-15). Result We recruited 100 patients with mild (n = 24), moderate (n = 28), and severe (n = 48) COVID-19 who were followed for a median of (IQR) 225 (187?262) days. In the acute phase, patients with severe COVID-19 had higher concentrations of NfL than all other groups (all p < 0.001) and higher GFAp than controls (p < 0.001). GFAp was also significantly increased in moderate disease (p < 0.05) compared with controls. NfL (r = 0.53, p < 0.001) and GFAp (r = 0.39, p < 0.001) correlated with GDF-15 during the acute phase. After six months, NfL and GFAp concentrations had normalized, with no persisting group differences. Despite this, 50 patients reported persistent neurological symptoms, most commonly included fatigue (n = 40), ?brain-fog? (n = 29), and changes in cognition (n = 25). We found no relation between persistent neurological symptoms and CNS injury biomarkers in the acute phase. Conclusion The normalization of CNS injury biomarkers in all individuals, regardless of previous disease severity or persisting neurological symptoms, indicate that post-acute COVID-19 neurological sequelae are not accompanied by ongoing CNS injury. Although injury biomarkers commonly increase in severe acute COVID-19, further investigations into the causes of post-infectious sequelae are needed.

7.
J Neuroradiol ; 49(6): 421-427, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1521436

ABSTRACT

BACKGROUND AND PURPOSE: A wide range of neuroradiological findings has been reported in patients with coronavirus disease 2019 (COVID-19), ranging from subcortical white matter changes to infarcts, haemorrhages and focal contrast media enhancement. These have been descriptively but inconsistently reported and correlations with clinical findings and biomarkers have been difficult to extract from the literature. The purpose of this study was to quantify the extents of neuroradiological findings in a cohort of patients with COVID-19 and neurological symptoms, and to investigate correlations with clinical findings, duration of intensive care and biomarkers in blood. MATERIAL AND METHODS: Patients with positive SARS-CoV-2 and at least one new-onset neurological symptom were included from April until July 2020. Nineteen patients were examined regarding clinical symptoms, biomarkers in blood and MRI of the brain. In order to quantify the MRI findings, a semi-quantitative neuroradiological severity scale was constructed a priori, and applied to the MR images by two specialists in neuroradiology. RESULTS AND CONCLUSIONS: The score from the severity scale correlated significantly with blood biomarkers of CNS injury (glial fibrillary acidic protein, total-tau, ubiquitin carboxyl-terminal hydrolase L1) and inflammation (C-reactive protein), Glasgow Coma Scale score, and the number of days spent in intensive care. The underlying radiological assessments had inter-rater agreements of 90.5%/86% (for assessments with 2/3 alternatives). Total intraclass correlation was 0.80. Previously reported neuroradiological findings in COVID-19 have been diverse and heterogenous. In this study, the extent of findings in MRI examination of the brain, quantified using a structured report, shows correlation with relevant biomarkers.


Subject(s)
COVID-19 , Humans , Glasgow Coma Scale , SARS-CoV-2 , Ubiquitin Thiolesterase , Biomarkers , Critical Care
8.
Clin Infect Dis ; 73(9): e3019-e3026, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1501050

ABSTRACT

BACKGROUND: Recent findings indicated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related neurological manifestations involve cytokine release syndrome along with endothelial activation, blood brain barrier dysfunction, and immune-mediated mechanisms. Very few studies have fully investigated the cerebrospinal fluid (CSF) correlates of SARS-CoV-2 encephalitis. METHODS: Patients with polymerase chain reaction (PCR)-confirmed SARS-CoV-2 infection and encephalitis (COV-Enc), encephalitis without SARS-CoV-2 infection (ENC), and healthy controls (HC) underwent an extended panel of CSF neuronal (neurofilament light chain [NfL], T-tau), glial (glial fibrillary acidic protein [GFAP], soluble triggering receptor expressed on myeloid cells 2 [sTREM2], chitinase-3-like protein 1 [YKL-40]) and inflammatory biomarkers (interleukin [IL]-1ß, IL-6, Il-8, tumor necrosis factor [TNF] α, CXCL-13, and ß2-microglobulin). RESULTS: Thirteen COV-Enc, 21 ENC, and 18 HC entered the study. In COV-Enc cases, CSF was negative for SARS-CoV-2 real-time PCR but exhibited increased IL-8 levels independently from presence of pleocytosis/hyperproteinorracchia. COV-Enc patients showed increased IL-6, TNF- α, and ß2-microglobulin and glial markers (GFAP, sTREM2, YKL-40) levels similar to ENC but normal CXCL13 levels. Neuronal markers NfL and T-tau were abnormal only in severe cases. CONCLUSIONS: SARS-CoV-2-related encephalitis were associated with prominent glial activation and neuroinflammatory markers, whereas neuronal markers were increased in severe cases only. The pattern of CSF alterations suggested a cytokine-release syndrome as the main inflammatory mechanism of SARS-CoV-2-related encephalitis.


Subject(s)
COVID-19 , Encephalitis , Cytokine Release Syndrome , Glial Fibrillary Acidic Protein , Humans , SARS-CoV-2
9.
Brain Commun ; 3(3): fcab099, 2021.
Article in English | MEDLINE | ID: covidwho-1358433

ABSTRACT

Preliminary pathological and biomarker data suggest that SARS-CoV-2 infection can damage the nervous system. To understand what, where and how damage occurs, we collected serum and CSF from patients with COVID-19 and characterized neurological syndromes involving the PNS and CNS (n = 34). We measured biomarkers of neuronal damage and neuroinflammation, and compared these with non-neurological control groups, which included patients with (n = 94) and without (n = 24) COVID-19. We detected increased concentrations of neurofilament light, a dynamic biomarker of neuronal damage, in the CSF of those with CNS inflammation (encephalitis and acute disseminated encephalomyelitis) [14 800 pg/ml (400, 32 400)], compared to those with encephalopathy [1410 pg/ml (756, 1446)], peripheral syndromes (Guillain-Barré syndrome) [740 pg/ml (507, 881)] and controls [872 pg/ml (654, 1200)]. Serum neurofilament light levels were elevated across patients hospitalized with COVID-19, irrespective of neurological manifestations. There was not the usual close correlation between CSF and serum neurofilament light, suggesting serum neurofilament light elevation in the non-neurological patients may reflect peripheral nerve damage in response to severe illness. We did not find significantly elevated levels of serum neurofilament light in community cases of COVID-19 arguing against significant neurological damage. Glial fibrillary acidic protein, a marker of astrocytic activation, was not elevated in the CSF or serum of any group, suggesting astrocytic activation is not a major mediator of neuronal damage in COVID-19.

10.
EBioMedicine ; 70: 103512, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1330766

ABSTRACT

BACKGROUND: Neurologic manifestations are well-recognized features of coronavirus disease 2019 (COVID-19). However, the longitudinal association of biomarkers reflecting CNS impact and neurological symptoms is not known. We sought to determine whether plasma biomarkers of CNS injury were associated with neurologic sequelae after COVID-19. METHODS: Patients with confirmed acute COVID-19 were studied prospectively. Neurological symptoms were recorded during the acute phase of the disease and at six months follow-up, and blood samples were collected longitudinally. Healthy age-matched individuals were included as controls. We analysed plasma concentrations of neurofilament light-chain (NfL), glial fibrillary acidic protein (GFAp), and growth differentiation factor 15 (GDF-15). FINDINGS: One hundred patients with mild (n = 24), moderate (n = 28), and severe (n = 48) COVID-19 were followed for a median (IQR) of 225 (187-262) days. In the acute phase, patients with severe COVID-19 had higher concentrations of NfL than all other groups (all p < 0·001), and higher GFAp than controls (p < 0·001). GFAp was also significantly increased in moderate disease (p < 0·05) compared with controls. NfL (r = 0·53, p < 0·001) and GFAp (r = 0·39, p < 0·001) correlated with GDF-15 during the acute phase. After six months, NfL and GFAp concentrations had normalized, with no persisting group differences. Despite this, 50 patients reported persistent neurological symptoms, most commonly fatigue (n = 40), "brain-fog" (n = 29), and changes in cognition (n = 25). We found no correlation between persistent neurological symptoms and CNS injury biomarkers in the acute phase. INTERPRETATION: The normalization of CNS injury biomarkers in all individuals, regardless of previous disease severity or persisting neurological symptoms, indicates that post COVID-19 neurological sequelae are not accompanied by ongoing CNS injury. FUNDING: The Swedish State Support for Clinical Research, SciLifeLab Sweden, and the Knut and Alice Wallenberg Foundation have provided funding for this project.


Subject(s)
Astrocytes/pathology , Astrocytes/virology , COVID-19/pathology , COVID-19/virology , SARS-CoV-2/pathogenicity , Aged , Astrocytes/metabolism , Biomarkers/blood , Biomarkers/metabolism , COVID-19/blood , COVID-19/metabolism , Disease Progression , Female , Follow-Up Studies , Glial Fibrillary Acidic Protein/metabolism , Humans , Longitudinal Studies , Male , Middle Aged , Neurofilament Proteins/metabolism , Neurons/metabolism , Neurons/pathology , Neurons/virology , Sweden
11.
Sci Rep ; 11(1): 6357, 2021 03 18.
Article in English | MEDLINE | ID: covidwho-1142469

ABSTRACT

The recent SARS-CoV-2 pandemic manifests itself as a mild respiratory tract infection in most individuals, leading to COVID-19 disease. However, in some infected individuals, this can progress to severe pneumonia and acute respiratory distress syndrome (ARDS), leading to multi-organ failure and death. This study explores the proteomic differences between mild, severe, and critical COVID-19 positive patients to further understand the disease progression, identify proteins associated with disease severity, and identify potential therapeutic targets. Blood protein profiling was performed on 59 COVID-19 mild (n = 26), severe (n = 9) or critical (n = 24) cases and 28 controls using the OLINK inflammation, autoimmune, cardiovascular and neurology panels. Differential expression analysis was performed within and between disease groups to generate nine different analyses. From the 368 proteins measured per individual, more than 75% were observed to be significantly perturbed in COVID-19 cases. Six proteins (IL6, CKAP4, Gal-9, IL-1ra, LILRB4 and PD-L1) were identified to be associated with disease severity. The results have been made readily available through an interactive web-based application for instant data exploration and visualization, and can be accessed at https://phidatalab-shiny.rosalind.kcl.ac.uk/COVID19/ . Our results demonstrate that dynamic changes in blood proteins associated with disease severity can potentially be used as early biomarkers to monitor disease severity in COVID-19 and serve as potential therapeutic targets.


Subject(s)
Biomarkers/blood , COVID-19/blood , Central Nervous System Diseases/virology , Proteome , Aged , COVID-19/complications , Case-Control Studies , Cohort Studies , Female , Gene Expression Profiling , Gliosis/virology , Humans , Male , Middle Aged , Nerve Tissue Proteins/blood
12.
Eur J Neurol ; 28(10): 3324-3331, 2021 10.
Article in English | MEDLINE | ID: covidwho-1035403

ABSTRACT

BACKGROUND AND PURPOSE: Neurological symptoms have been frequently reported in hospitalized patients with coronavirus disease 2019 (COVID-19), and biomarkers of central nervous system (CNS) injury are reported to be increased in plasma but not extensively studied in cerebrospinal fluid (CSF). This study examined CSF for biomarkers of CNS injury and other pathology in relation to neurological symptoms and disease severity in patients with neurological manifestations of COVID-19. METHODS: Nineteen patients with neurological symptoms and mild to critical COVID-19 were prospectively included. Extensive analysis of CSF, including measurement of biomarkers of CNS injury (neurofilament light chain [NfL] protein, glial fibrillary acidic protein [GFAp], and total tau), was performed and compared to neurological features and disease severity. RESULTS: Neurological symptoms included altered mental status (42%), headache (42%), and central (21%) and peripheral weakness (32%). Two patients demonstrated minor pleocytosis, and four patients had increased immunoglobulin G levels in CSF. Neuronal autoantibody testing using commercial tests was negative in all patients. Increased CSF levels of NfL protein, total tau, and GFAp were seen in 63%, 37%, and 16% of patients, respectively. Increased NfL protein correlated with disease severity, time in intensive care, and level of consciousness. NfL protein in CSF was higher in patients with central neurological symptoms. CONCLUSIONS: Although limited by the small sample size, our data suggest that levels of NfL protein, GFAp, and total tau in CSF are commonly elevated in patients with COVID-19 with neurological symptoms. This is in contrast to the standard CSF workup where pathological findings are scarce. NfL protein, in particular, is associated with central neurological symptoms and disease severity.


Subject(s)
COVID-19 , Neurofilament Proteins , Biomarkers , Central Nervous System , Glial Fibrillary Acidic Protein , Humans , SARS-CoV-2 , Severity of Illness Index
13.
Neurology ; 95(12): e1754-e1759, 2020 09 22.
Article in English | MEDLINE | ID: covidwho-601304

ABSTRACT

OBJECTIVE: To test the hypothesis that coronavirus disease 2019 (COVID-19) has an impact on the CNS by measuring plasma biomarkers of CNS injury. METHODS: We recruited 47 patients with mild (n = 20), moderate (n = 9), or severe (n = 18) COVID-19 and measured 2 plasma biomarkers of CNS injury by single molecule array, neurofilament light chain protein (NfL; a marker of intra-axonal neuronal injury) and glial fibrillary acidic protein (GFAp; a marker of astrocytic activation/injury), in samples collected at presentation and again in a subset after a mean of 11.4 days. Cross-sectional results were compared with results from 33 age-matched controls derived from an independent cohort. RESULTS: The patients with severe COVID-19 had higher plasma concentrations of GFAp (p = 0.001) and NfL (p < 0.001) than controls, while GFAp was also increased in patients with moderate disease (p = 0.03). In patients with severe disease, an early peak in plasma GFAp decreased on follow-up (p < 0.01), while NfL showed a sustained increase from first to last follow-up (p < 0.01), perhaps reflecting a sequence of early astrocytic response and more delayed axonal injury. CONCLUSION: We show neurochemical evidence of neuronal injury and glial activation in patients with moderate and severe COVID-19. Further studies are needed to clarify the frequency and nature of COVID-19-related CNS damage and its relation to both clinically defined CNS events such as hypoxic and ischemic events and mechanisms more closely linked to systemic severe acute respiratory syndrome coronavirus 2 infection and consequent immune activation, as well as to evaluate the clinical utility of monitoring plasma NfL and GFAp in the management of this group of patients.


Subject(s)
Astrocytes/metabolism , Coronavirus Infections/blood , Glial Fibrillary Acidic Protein/blood , Neurofilament Proteins/blood , Neurons/metabolism , Pneumonia, Viral/blood , Adult , Age Factors , Aged , Betacoronavirus , Biomarkers/blood , COVID-19 , Case-Control Studies , Female , Follow-Up Studies , Humans , Male , Middle Aged , Pandemics , SARS-CoV-2 , Severity of Illness Index , Single Molecule Imaging
14.
Annals of Neurology ; n/a(n/a), 2020.
Article | WHO COVID | ID: covidwho-276374

ABSTRACT

Covid-19 infection has the potential for targeting the central nervous system and several neurological symptoms have been described in patients with severe respiratory distress. Here we described the case of a 60-year old subject with SARS-CoV-2 infection but only mild respiratory abnormalities who developed an akinetic mutism due to encephalitis. MRI was negative whereas EEG showed generalized theta slowing. CSF analyses during the acute stage were negative for SARS-CoV-2, positive for pleocytosis and hyperproteinorrachia, and showed increased IL-8 and TNF-α concentrations while other infectious or autoimmune disorders were excluded. A progressive clinical improvement along with a reduction of CSF parameters was observed after high-dose steroid treatment, thus arguing for an inflammatory-mediated brain involvement related to Covid-19. This article is protected by copyright. All rights reserved.

SELECTION OF CITATIONS
SEARCH DETAIL